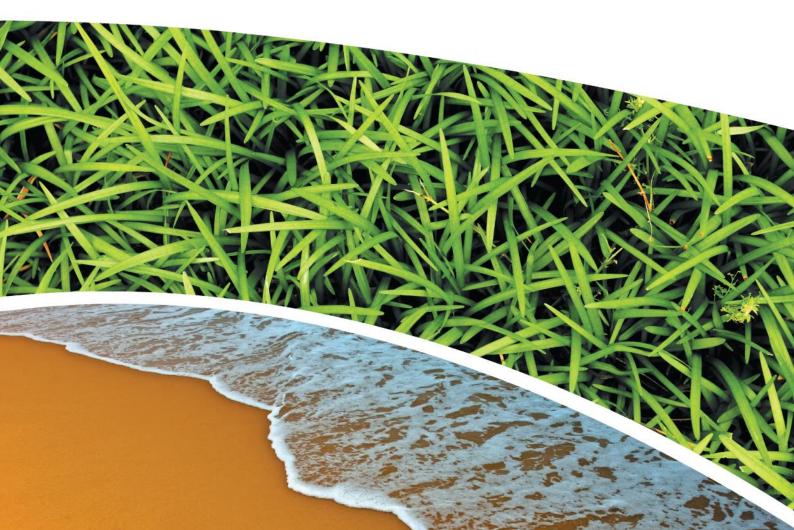


Wastewater Management Report

Proposed Subdivision

Lot 3 DP 614789 29 Fords Road, Clarence Town


Prepared for Le Mottee Group

Prepared by RCA Australia

RCA ref 15771-201/0

November 2021

RCA Australia

ABN 53 063 515 711 92 Hill Street, Carrington NSW 2294

Telephone: 02 4902 9200 Email: <u>administrator@rca.com.au</u> Internet: www.rca.com.au

This document is and shall remain the property of RCA Australia. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

	DOCUMENT STATUS						
Rev No	Comment	Author	Reviewer	Approved for Issue (Project Mar			
NO				Name	Signature	Date	
/0	Final	B. Garner	M. Allman	M. Allman	Masth	16/11/21	

	DOCUMENT DISTRIBUTION					
Rev No Copies Format Issued to Description				Date		
/0	1	Electronic (email) Kate Wheeler - kate@lemottee.com		16/11/21		
/0	1	Electronic report	RCA – job archive 16/1			

Contents

1	INTRO	DUCTIO	N	.1
2	SITE D	ESCRIP	TION	.2
	2.1	GENERA	L	2
	2.2	TOPOGR	APHIC SETTING	2
	2.1	GEOLOG	CAL SETTING	3
	2.2	VEGETA	ΤΙΟΝ	3
3	FIELD	AND LA	BORATORY INVESTIGATION	.5
4	SUBSI	JRFACE	CONDITIONS	.7
5	SITE V	VASTEW	ATER DISPOSAL ASSESSMENT	.7
	5.1	INTRODU	ICTION	7
	5.2	SITE AND	SOIL ASSESSMENT	7
	5.3	WASTEN	VATER SYSTEM SELECTION	13
	5.4	LAND AF	PPLICATION AREA SIZING	14
		5.4.1	GENERAL	14
		5.4.2	Hydraulic Loading	14
		5.4.3	CALCULATION PARAMETERS	15
		5.4.4	RESULTS	15
	5.5	SPECIFIC	CATION	16
		5.5.1	PLUMBING	
		5.5.2	WASTEWATER TREATMENT SYSTEM	16
		5.5.3	LAND APPLICATION SYSTEM	
		5.5.4	OPERATION OF WASTEWATER SYSTEM	18
6	LIMITA	TIONS.		18
REF		ES		20

APPENDIX A

DRAWING 1 – SITE OVERVIEW PLAN DRAWING 2 – SITE PLAN DRAWING 3 – TYPICAL SSI LAYOUT 1 DRAWING 4 – TYPICAL SSI LAYOUT 2

APPENDIX B

ENGINEERING LOGS EXPLANATORY NOTES

APPENDIX C

LABORATORY TEST REPORTS

APPENDIX D

WATER BALANCE CALCULATIONS

RCA Ref.: 15771-201/0

16 November 2021

Kevin Greenhalgh C/o Le Mottee Group PO Box 363 RAYMOND TERRACE NSW 2324

Attention: Kate Wheeler

Geotechnical Engineering Engineering Geology Environmental Engineering Hydrogeology Construction Materials Testing Environmental Monitoring Noise & Vibration Occupational Hygiene

WASTEWATER MANAGEMENT REPORT PROPOSED SUBDIVISION LOT 3 DP 614789 29 FORDS ROAD, CLARENCE TOWN

1 INTRODUCTION

This report presents the findings of a wastewater management study undertaken at Lot 3 DP 614789 29 Fords Road, Clarence Town. The investigation was undertaken at the request of Kate Wheeler of Le Mottee Group.

It is understood that the site is proposed to be subdivided into two (2) new lots, including:

- Proposed Lot 311: Approximately 2.2ha in size, includes existing dwelling and associated on-site sewerage management system (OSSM).
- Proposed Lot 312: Approximately 1.16 ha in size.

Proposed Lot 312 is the subject of the investigation and is herein referred to as the site.

The report provides the following:

- Description of the surface and subsurface conditions encountered at the site.
- Details of fieldwork and laboratory testing undertaken.
- Description of the site geology and subsurface conditions encountered at the site

- A detailed evaluation of the site and soil constraints to onsite sewerage management (OSSM).
- Comments on acceptable / suitable onsite wastewater treatment systems and sizing.

For the purpose of the investigation, RCA were provided with preliminary site plans produced by Le Mottee Group showing the location and configuration of the proposed subdivision (Reference 6701 PS-V6, sheet 1 and 2, dated 8/09/2021).

2 SITE DESCRIPTION

2.1 GENERAL

The site is a 1.16-hectare irregular shaped rural lot located approximately 250m east of the intersection of Glen William Road and Fords Road, Clarence Town. The site has a southern frontage onto Fords Road and is bordered on all other sides by predominately developed rural lots. The Williams River meanders to the east (approximately 800m south-east of the site the closest point). A site locality plan showing the approximate location of the site, the adjacent surrounding area and area of proposed development is presented on **Drawing 1**, which is attached as **Appendix A**.

Site details relevant to onsite wastewater management are summarised below in Table 1.

Table 1Summary of site details.

Site	Lot 3 DP 614789 29 Fords Road, Clarence Town	
Lot Size	1.16Ha	
Availability of Sewer	Nil	
Proposed water Supply	Tank water	
Council Area	Dungog Shire Council	
Council OSSM Hazard Class	Medium*	

TBC by Council

2.2 TOPOGRAPHIC SETTING

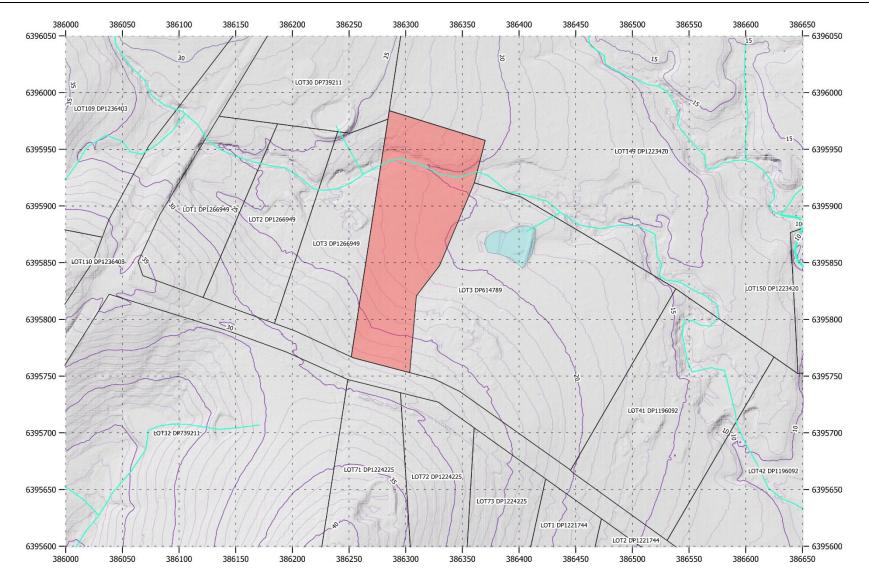
The site is situated in the Clarence Town Hills region (Glen William Erosional Landscape - Ref [1]), comprising of undulating low hills to gently undulating rises of Carboniferous volcanics and sediments with localised areas of level plains to gently undulating low rises on alluvial terrace deposits.

The eastern portion of the site is situated on the lower northern foot slopes of a low hill located to the south. The slope is gently waxing divergent in form and inclined down to the north at an angle of approximately 5°. Slopes reduce to approximately 2° in the northern portion of the site, continuing to slope down towards a water course running adjacent to the site boundary. Reference to publicly available LiDAR data indicates that elevations vary across the site range from approximately 28m AHD at the southern site boundary down to approximately 19m AHD in the watercourse the in the north-eastern portion of the site

Hydrolines obtained from NSW Spatial Services indicate that the watercourse extending though the northern portion of the site is non-perennial. The extent of the watercourse can be clearly distinguished within hillshade models produced from LiDAR data.

Figure 1 provides and overview of the site and proposed development area on a contour / hillshade model of the existing ground surface terrain.

2.3 GEOLOGICAL SETTING


Reference to the NSW Seamless Geology Map (Ref [2]) indicates that the site is underlain by Carboniferous aged rocks belonging to the Wallringa Formation (New England Orogen / Gresford Block). The Wallringa Formation is documented to largely comprise of thick beds of brown to pink, lithic to conglomeratic sandstone with minor interbeds of fine-grained sediments. The nearest mapped structural measurement indicates that bedding of the Wallringa Formation is typically to the east at an angle of 15°.

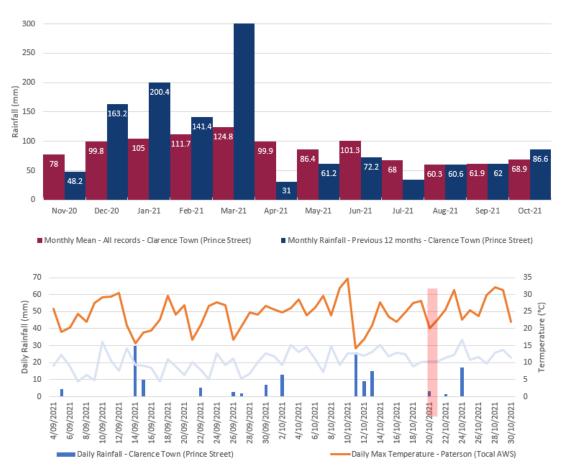
Shallow to moderately deep alluvial terrace sediments are expected to overly bedrock in the northern portion of the site.

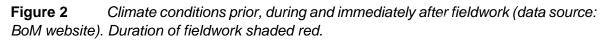
2.4 VEGETATION

The site is largely cleared of vegetation and is predominantly covered by a maintained grass cover. A number of scattered intermediate to mature trees were located on site boundaries and within the water course.

Figure 1 Lot boundary and proposed 312 lot area (shaded red) overlayed on mapped hydrolines and surface contours. Proposed Lot 311 occupies the unshaded portion of Lot 3 DP614789. Model extracted from data obtained from NSW Spatial Services.

Le Mottee Group Wastewater Management Report Lot 3 DP 614789 29 Fords Road, Clarence Town RCA Ref.:15771-201/0, November 2021


3 FIELD AND LABORATORY INVESTIGATION


Field investigation was carried out on the 19th October 2021 and involved the following:

- A visual appraisal and mapping of site conditions and features.
- Drilling, sampling and logging of three (3) hand auger / shovel boreholes to depths ranging from 0.5m to 1.4m.

The approximate locations of the boreholes together with site features are shown on the site plan which is attached as **Drawing 01**, in **Appendix A**. Engineering logs of the subsurface conditions encountered in the boreholes are presented in **Appendix B**, together with explanation sheets.

Fieldwork was undertaken during fine weather. The preceding monthly rainfall totals were generally in accordance with historical averages apart from March, in which over 600mm of rainfall was recorded. The weather conditions encountered prior, during and after the fieldwork are summarised in **Figure 2**.

Site conditions encountered at the time of fieldwork are documented in **Figure 2** and **Figure 3** below.

Figure 3 Panoramic photograph taken from the south-western corner of the site.

Figure 4 Conditions within the water course located in the northern portion of the site.

Le Mottee Group Wastewater Management Report Lot 3 DP 614789 29 Fords Road, Clarence Town RCA Ref.:15771-201/0, November 2021

4 SUBSURFACE CONDITIONS

The soil profile encountered in the southern portion of the site (hill foot slopes) typically comprised a relatively thin (up to 0.25m) sandy clay loam topsoil (A horizon) overlaying shallow depths of sandy clay / medium clay residual soils (B horizon). Hardpan / bedrock was encountered at depths of 0.6m or less.

The soil profile encountered in the northern portion of the site (lower alluvial terrace) comprised of shallow relatively thin (up to 0.25m) sandy clay loam topsoil (A horizon) overlaying sandy clay / heavy clay alluvium (B horizon) to depths of 0.95m. Hard residual sandy clay (C horizon)

While no groundwater or seepage was encountered in the hand auger / shovel boreholes at the time of fieldwork, soils were noted to be relatively moist in the lower northern portion of the site due to the presence of the water course and a small farm dam located in the northern portion of proposed lot 311. It should be noted that groundwater and ground surface conditions are likely to fluctuate with variations in climatic and site conditions.

5 SITE WASTEWATER DISPOSAL ASSESSMENT

5.1 INTRODUCTION

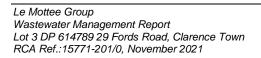
The suitability of the proposed site development area for on-site wastewater management has been assessed in accordance with the NSW Department of Local Government Guidelines of On-Site Sewage Management for Single Households 1998 (*EHPG 1998*) (Ref [3]) Australian Standard AS/NZS1547:2012 *On-site Domestic Wastewater Management (AS/NZS1547:2012)* (Ref [4]) and the BMT WBM Dungog Shire Council On-site Sewerage Development Assessment Framework (Ref [5]).

5.2 SITE AND SOIL ASSESSMENT

The site and soil assessment was in accordance with Section 5.2 and Appendix B of AS/NZS 1547:2012.

The assessment identified that suitable site effluent application areas were highly constrained due to limited soil depth, the presence of a water course and strongly to moderately acidic, marginally sodic soils with a low to moderate capacity to hold plant nutrients / pollutants. The following controls have been included within the advice to address the identified constraints:

- Conservatively sizing of the land application area (LAA) using monthly water balance and annual nutrient balance calculations.
- The location of the LAA is to be limited to slopes in southern portion of the site at a suitable distance away from the existing watercourse / farm dam.



- Application of approximately 0.5kg/m² of lime over the base of the LAA to ameliorate existing poor soil conditions. The lime should be mixed into the existing soil profile / fill material using ripping tynes prior to and during the placement of topsoil fill.
- Installation of an upslope bund to divert all run-on stormwater to area downslope of the LAA.
- Filling of the LAA with a good quality site won / imported topsoil fill (clean sandy loam / clay loam) to raise the level of the LAA.
 - Some suitable fill material may be won onsite by selectively stockpiling topsoil (the upper ~0.2-0.3m of soil) stripped from the footprint of any proposed buildings (this material is typically considered unsuitable to be left in place below slabs).
 - An average imported thickness of 0.5m is recommended over the LAA to achieve a minimum overall soil depth of 0.7m (0.6m from the bottom of the irrigation line to the limiting layer). Fill material should be battered at 1V:3H at the edges for long term stability.

Summaries of the site and soil assessment are presented below on **Table 2** and **Table 3**. Full soil laboratory results are attached as **Appendix C**.

Table 2Summary of Site Assessment.

Site Feature	Observation	Limitation	Comments
Slope	~ 6 - 7% across proposed LAA (southern portion of site).SlopeSlopes reduce in northern portion of site.		Moderate limitation on surface irrigation. No influence on design of subsurface system.
Exposure North facing slope with minimal tress. Expected high sun and wind exposure, minimal shading / overshadowing.		Minor	No influence on design.
Vegetation	Predominantly established grass. Scattered trees on site boundaries.	Minor	No influence on design.
Flood Potential	Council to confirm flood levels (not available at the time of writing this report)	Minor	LAA to be situated on southern slopes above RL 23m AHD (existing water course ~RL 20m AHD)
Surface water (run- on / upslope seepage)	Southern slopes appear well drained (gently waxing divergent slope). No indications of up-slope seepage. Minor run-on could be anticipated. Northern slopes likely to receive significant run-on (linear convergent slope).	Minor to Moderate	LAA to be situated on southern slopes. Stormwater / seepage from upslope areas to be diverted away from LAA by bund / catch drain.
Site Drainage	Southern slopes appear well drained. No indicators of surface saturation or waterlogging. Vigorous grass growth, increased soil moisture and soil mottling indicate water logging in northern slopes.	Minor to moderate	As above.

Depth to Limiting Horizon	Bedrock, hardpan or heavy residual clays typically encountered at depths less than 0.4m below existing ground surface.	Major	LAA will need to be raised above existing ground level to ensure adequate depth of soil to allow satisfactory hydraulic and treatment performance.
Depth to GroundwaterGroundwater in southern portion of site anticipated to be heavily influenced by water levels in adjacent water course and farm dam.		Minor to moderate	LAA to be situated on southern slopes.
Rocks and Outcrops	Surface outcrops of bedrock not observed.	Minor	No influence on design.
Filling	Minor disturbance / filling of topsoil noted in southern portion of site	Minor	No influence on design.
Buffers / Watercourse and Sensitive Receptors	Unnamed nonperennial water course located on northern site boundary. Farm dam located in the northern portion of the adjacent proposed Lot 311.	Moderate	Conservative buffer distances of >100m from the non- perennial watercourse and >70m from the existing farm dam can be achieved for a LAA constructed on the southern slopes. No influence on design.

Table 3Summary of Soil Assessment.

Soil Feature	Observation / Laboratory Results		Limitation	Comments
		Approximately 0.2m to 0.4m on southern slopes. Hand auger refusal on bedrock / rock structure encountered at relatively shallow depths at all test locations on southern slopes.		LAA will need to be raised above existing ground level to ensure adequate depth of soil to allow satisfactory hydraulic and treatment performance.
		0.00 – 0.20m A: Sandy Clay Loam, moderately structured (Cat 4)		
	BH01	0.20 – 0.45m B: Sandy Clay, weakly structured (Cat 4/5)		
		0.45 – 0.50m C: Sandstone		
	BH02	0.00 – 0.10m A1: Sandy Clay Loam, moderately structured (Cat 4)		
Soil Texture and		0.20 – 0.25m A2: Sandy Clay, weakly structured (Cat 4/5)	Moderate	Soils moderately to poorly suited to
Structure		0.45 – 0.60m B: Medium Clay, weakly structured to massive	Moderale	effluent irrigation.
		0.00 – 0.20m A: Sandy Clay Loam, moderately structured (Cat 4)		
		0.15 – 0.60m B1: Sandy Clay, weakly structured (Cat 4/5)		
	BH03	0.60 – 0.95m B2: Heavy Clay, weakly structured to massive (Cat 6)		
		0.95 – 1.40m C: Sandy Clay, weakly structured		
Coarse fragments	Typically 2 to 10% gravel inclusions.		Minor	Larger cobbles (if encountered) to be removed during site preparation works.

Sample	BH01 0.10 – 0.25m	BH02 0.15 – 0.25m		
pH _(1:5 water)	5.12	5.42	Moderate	Strongly to moderately acidic
EC (dS/m)	0.04	0.07	Minor	Non-saline
Emerson Aggregate Class	6	6	Minor	Low likelihood of dispersion
Cation Exchange Capacity (CEC)	7.26 cmol/kg	16.7 cmol/kg	Minor to moderate	Low to moderate capacity to hold plant nutrients / effluent pollutants
Exchangeable Sodium Percentage (ESP)	4.55 %	8.76 %	Minor to moderate	Non-sodic to marginally sodic
Phosphorus	810 mg/kg	740 mg/kg	Minor	Ligh corntian consoit :
Sorption Capacity	11300kg/ha	10400hg/ha	Minor	High sorption capacity

5.3 WASTEWATER SYSTEM SELECTION

Due to the significant site and soil constraints, it is recommended that generated wastewater is treated to a minimum secondary quality standard with disinfection. Primary treatment systems such as septic tanks are not considered appropriate for the site.

Appropriate secondary treatment technologies considered suitable for the site include, but are not limited to, Aerated Wastewater Treatment Systems (AWTS), Aerobic Sand Filter Systems (appropriately designed to satisfy council) and other media / textile systems. The selection of the system is the responsibility of the property owner. The selected technology / system shall:

- Be accredited by the NSW Department of Health. Information on accreditation guidelines, systems and suppliers can be found on the NSW Government Health website (Ref [6]).
- Be capable of producing treated effluent of the following quality (90th Percentile):
 - Biochemical Oxygen Demand (BOD) ≤ 20mg/L
 - Total Suspended Solids (TSS) \leq 30mg/L
 - Thermotolerant Coliforms ≤ 30cfu/100mL
 - Total Nitrogen ≤ 30mg/L
 - Total Phosphorus ≤ 10mg/L
- Be capable of effluent disinfection. Effluent disinfection methods typically comprise of ultraviolet radiation (UV) and /or chlorination.

Several land application systems were considered for the site. **Table 4** provides a summary of the options considered and justification of selected land application system.

Table 4Sul	mmary of land application option considered for the site.
------------	---

Land Application Option	Comments	Suitable?
Subsoil Trenches and Beds	Major site constraints such as limited soil depth make this option unsuitable for the site.	No
Wisconsin Mound	Economic cost likely to be substantially greater than subsurface irrigation.	No
Surface Irrigation	Considered unsuitable due limited soil depth and potential contact risks.	No
Subsurface Irrigation	Likely to provide highest level of performance however will require importation of a minimum of 0.5m of sandy loam / clay loam fill.	Yes

As indicated in **Table 4**, given the site and soil constraints we recommend that the treated effluent be dispersed via sub-surface irrigation (SSI). SSI evenly distributes treated effluent to the root zone of the irrigation area through a network of proprietary polyethylene pipes located just below the ground surface of the LAA. The system optimises hydraulic and nutrient uptake, minimises the risk of human contact, reduces surface runoff and is comparatively easy to construct.

5.4 LAND APPLICATION AREA SIZING

5.4.1 GENERAL

The sizing of a site suitable SSI LAA has been estimated on the basis of nutrient and hydraulic balance as discussed below.

5.4.2 HYDRAULIC LOADING

Hydraulic (wastewater) loading has been calculated in accordance with *AS1547:2012* assuming a daily allowance of 120L per equivalent person for residential tank / roof water supply. The adopted number of equivalent persons has been based on an occupancy of two (2) equivalent persons for the first two (2) bedrooms and one (1) equivalent person for each bedroom beyond that. Calculations are provided for dwellings ranging in size from two (2) to four (4) bedrooms.

Table 5 provides a summary of the design hydraulic loading.

Table 5 Design Hydraulic Loading.

Numb	er of:	Daily Wastewater	Design Daily	
Bedrooms	Occupants	Allowance	Hydraulic Load	
2	4		480 L	
3	5	120 L / occupant	600 L	
4	6		720 L	

5.4.3 CALCULATION PARAMETERS

The sizing of the LAA was undertaken using the parameters summarised in Table 6.

Table 6Summary of parameters adopted in water and nutrient balance.

Design Parameter	Value	Comment
Rainfall Data	Clarence Town (Prince Street) – 061010	
Evaporation Data	Paters	on (Tocal) – 061250
Retained Rainfall	0.7	Conservative value for rainfall infiltrating LAA.
Design Loading Rate	3mm / day	Cat 4 soils - AS/NSZ 1547:2012
Design Nitrogen Load	30 mg/L	Target effluent quality following
Design Phosphorus Load	12 mg/L	secondary treatment
Crop Nitrogen Uptake	250 kg / ha / year	Published nutrient uptake for grass
Crop Phosphorus Uptake	30 kg / ha / year	(DECCW -2004) reduced by 75%
P-Sorption Capacity	740mg/kg	Conservative value based on labs
P-Sorption effectiveness	50%	Typical conservative value
Depth of Soil	0.6m	Design existing / imported soil depth
Nitrogen loss to soil processes	20%	Geary and Garner (1996)

5.4.4 RESULTS

The results of the calculations are presented in **Appendix D** and summarised in **Table 7** below.

Table 7	Summary of calculation results.
---------	---------------------------------

Number of	Min	imum Required Area	a (m²)	Nominated
Bedrooms	Hydraulic Balance	Nitrogen Balance	Phosphorus Balance	LLA Size (m²)
2	255	168	228	255
3	317	210	285	320
4	380	252	342	380

It is noted, considering suitable offset distances / buffers areas, that approximately 3,370m² of the proposed 11,600m² Lot 312 is considered suitable for use as LAA. The area considered suitable for LAA is shown shaded green on **Drawing 2 (Appendix A)**.

5.5 SPECIFICATION

A concept level specification for the on-site sewage management system is documented in the following sections.

5.5.1 PLUMBING

All wastewater (i.e. greywater and blackwater) generated from the residence is to be collected and directed to the proposed secondary wastewater treatment through a network of sanitary drainage pipes installed by a licensed plumber in accordance all with relevant standards including AS/NZS 2566.2:2002 Buried Flexible pipelines Part 2: Installation.

5.5.2 WASTEWATER TREATMENT SYSTEM

The accredited wastewater treatment system, selected by the owner in consultation with RCA and the supplier, should produce secondary quality disinfected effluent conforming to the quality requirements listed in Section 5.3. Final siting of the wastewater treatment system will depend on the localised site conditions / ground levels and should be determined in consultation with the system installer and council prior to installation. It is noted that:

- The system should be located within the area notated as "Area Suitable for LAA" in **Drawing 2** (**Appendix A**), and shall comply with the following buffer distances:
 - at least 3m downslope or 6m upslope from any building.
 - at least 15m downslope of any pool or potable water tanks.
- System access lids should be located above the 1% AEP flood level and approximately 100mm above surrounding finished ground level. The surrounding ground surface should be sloped away from the lid to avoid the accumulation and ingress of stormwater.
- All electrical components should be located above the 1% AEP flood level and tested by an appropriately qualified technician during system commissioning.

It is noted that excavations undertaken for the installation of a treatment system may encounter difficulties due to shallow rock that was encountered in all boreholes over the investigation area.

5.5.3 LAND APPLICATION SYSTEM

Treated effluent is to be disposed via a pressure compensated SSI incorporating:

- An adequately sized high head / low flow pump. Typically, an operating pressure of 100kPa to 400kPa is required at the emitters to ensure pressure compensation.
- An in-line 120-mesh filter installed on the irrigation supply main to prevent solids entering the pipelines and emitters. The filter should be installed to allow either manual cleaning or backflushing.

- Proprietary, pressure-compensating subsurface drip (PCSD) lines specifically designed for effluent irrigation such as Netafim Bioline. Lateral PSCD lines should be installed in approved site won / imported sandy loam / clayey loam at a depth of 0.1m to 0.15. PSCD lateral lines should be laid on spacings of approximately 0.6m and orientated roughly parallel to the slope contours. A minimum 0.6m of soil should be located between the base of the PSCD line and the limiting layer (bedrock). Drip line emitters are to contain root inhibitor and be rated for a flow rate of 1.6L to 2.1L per hour.
- Air / vacuum release valves installed at the high points of each application zone.

A schematic representation of a typical SSI system is presented as **Drawing 3** (**Appendix A**).. Specialist advice is required for detailing and installation of the system.

LAA earthwork preparations are expected to comprise;

- Removal of all shrubs and boulders within the proposed LAA area.
- Construction of an upslope bund / catch drain to divert all run-on stormwater / seepage to area downslope of the LAA. A typical bund / catch drain arrangement is included on **Drawing 4** (Appendix A).
- Application of approximately 0.5kg/m² of lime over the base of the LAA to ameliorate existing poor soil conditions. The lime should be mixed into the existing soils via ripping / scarification of the natural soils across the entire basal area to minimum depth of 0.2m taking care to ensure that the basal area is not compacted during the process. Ripping / scarification should extend a minimum of 1m beyond the perimeter of the LAA.
- Importation of a good quality site won / imported topsoil fill (clean sandy loam / clay loam) to raise the level of the LAA. The material is to be inspected and approved by RCA prior to importation. An average imported thickness of 0.5m is recommended over the LAA to achieve a minimum overall soil depth of 0.7m (0.6m from the bottom of the irrigation line to the limiting layer). Compaction of existing soils and imported fill soils should be minimised during fill placement. Fill material should be battered at 1V:3H at the edges and vegetated with grass for long term stability.
- Establishment of grass over the LAA immediately after the completion of constructions.

5.5.4 **OPERATION OF WASTEWATER SYSTEM**

Operation and management of the onsite wastewater system must be in accordance with relevant legislature, council requirements and the requirements of the system installer. Operation and management requirements of the onsite wastewater systems would typically include:

- A reserve area off 100% the design LAA set aside to allow for site expansion, the resting of the land application system or for duplication of the land application system if other circumstances require this at some time in the future.
- The erection of adequate signage to indicate that the area is being irrigated with treated effluent. Signage should be located in at least two places around perimeter of the LAA, with wording such as, "Recycled Water – Avoid Contact – DO NOT DRINK".
- The erection of fencing around the LAA to protect the LAA from damage caused vehicles, livestock and native animals and to exclude access of children or domestic animals.
- Regular mowing (at least monthly) of the LAA, with removal and disposal of the lawn clippings outside the LAA.
- Quarterly inspection by the service provider to ensure the wastewater system is operating correctly. During the inspection it is recommended that the service provider:
 - Services the secondary treatment system components in accordance with the owners/service manual.
 - Checks controls and alarms are functioning correctly.
 - Cleans in-line filters.
 - Flushes irrigation lines to remove any biofilm build up / blockages.

6 LIMITATIONS

This report has been prepared for Le Mottee Group accordance with the agreement with RCA Australia (RCA). The services performed by RCA have been conducted in a manner consistent with that generally exercised by members of its profession and consulting practice.

This report has been prepared for the sole use of Le Mottee Group for the specific purpose and the specific development described in the report. The report may not contain sufficient information for purposes or developments other than that described in the report or for parties other than Le Mottee Group. This report shall only be presented in full and may not be used to support objectives other than those stated in the report without permission.

The information in this report is considered accurate at the date of issue with regard to the current conditions of the site. The conclusions drawn in the report are based on interpolation

between boreholes or test pits. Conditions can vary between test locations that cannot be explicitly defined or inferred by investigation.

Yours faithfully RCA AUSTRALIA

BRANMON

Byron Garner Senior Geotechnical Engineer

Mask

Mark Allman Principal Geotechnical Engineer

REFERENCES

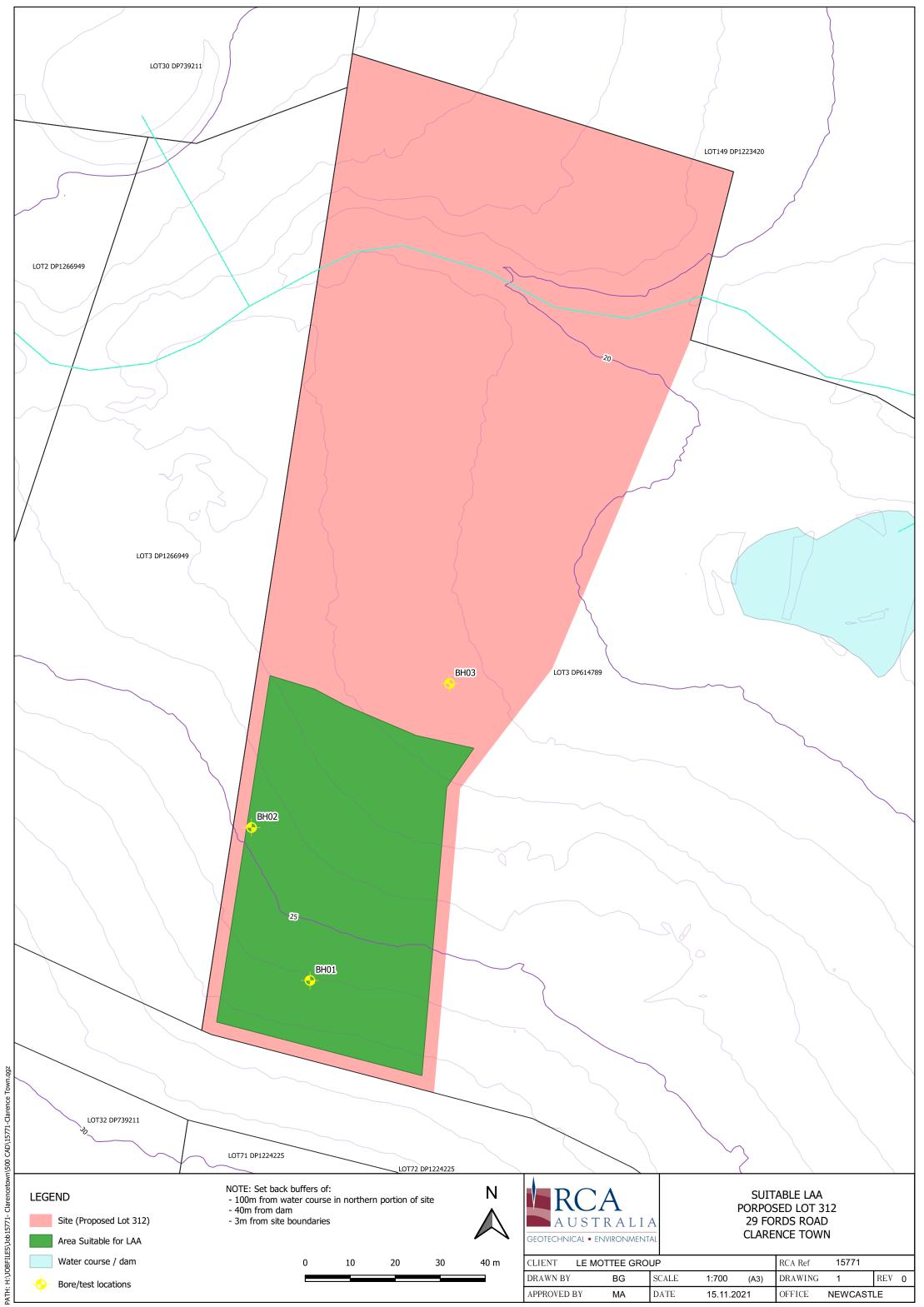
- [1] Department of Planning, Industry and Environment, 2020, Soil Landscapes of Central and Eastern NSW - v2.1, NSW Office of Environment and Heritage, Sydney.
- [2] Colquhoun G.P., Hughes K.S., Deyssing L., Ballard J.C., Folkes C.B, Phillips G., Troedson A.L. & Fitzherbert J.A. New South Wales Seamless Geology dataset, version 2 [Digital Dataset]. Geological Survey of New South Wales, Department of Regional NSW, Maitland, 2020.
- [3] NSW Department of Local Government, "Environmental Health Protection Guidelines – On Site Sewage Management for Single Households", February 1998
- [4] Standards Association of Australia. AS/NZS 1547-2012: On-Site domestic wastewater management. Standards Association of Australia, 2012
- [5] BMT WBM. Dungog Shire Council On-site Sewerage Development Assessment Framework – Version 3. Dungog Shire Council, June 2015
- [6] NSW Government Health Website. https://www.health.nsw.gov.au/environment/domesticwastewater/Pages/default.a spx

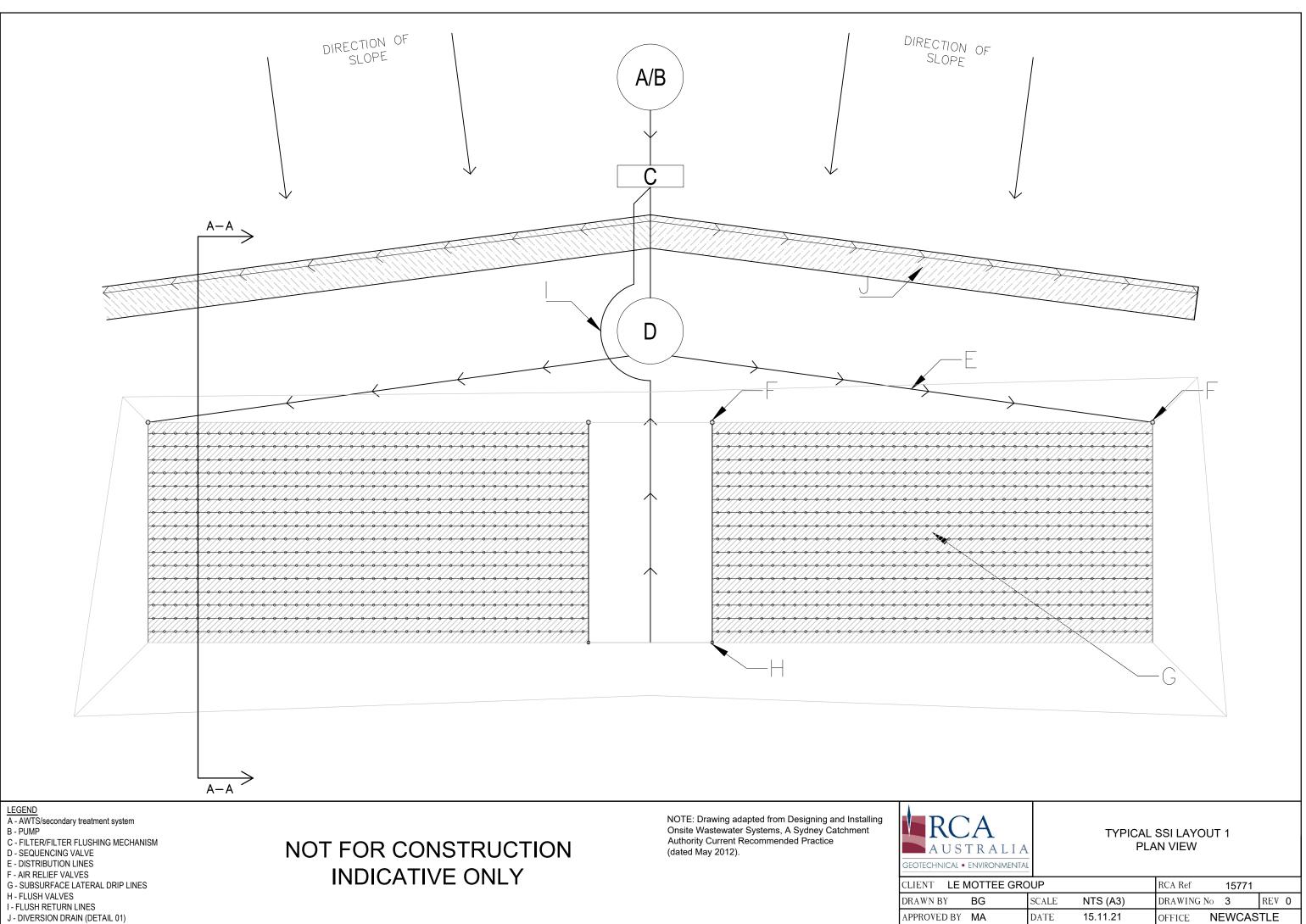
Appendix A

Drawing 1 – Site Plan

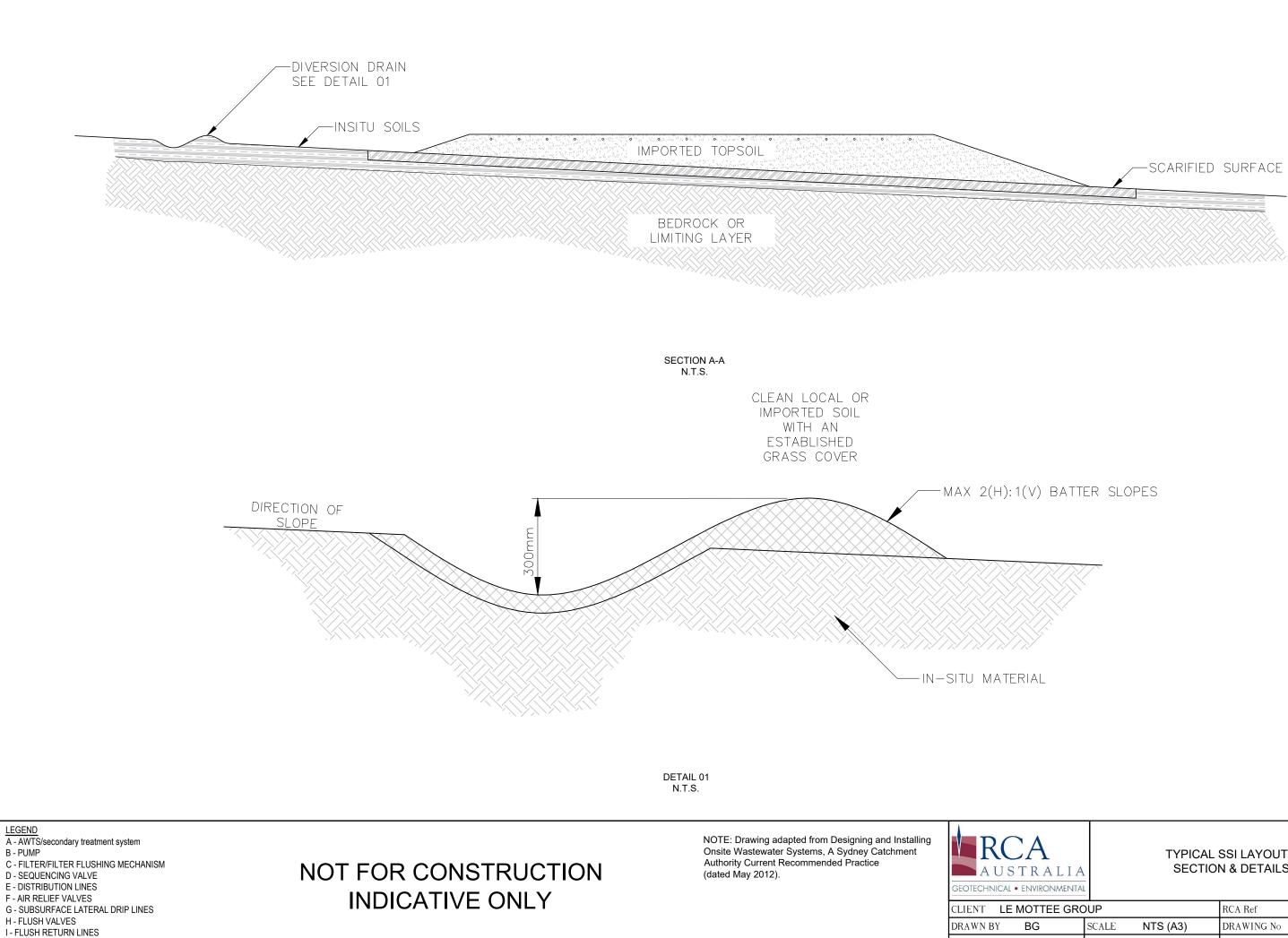
- Drawing 2 Suitable LAA Area
- Drawing 3 Typical SSI Layout 1

Drawing 4 – Typical SSI Layout 2





PATH


SITE PLAN LOT 3 DP 614789 29 FORDS ROAD CLARENCE TOWN

TTEE GRO	UP			RCA Ref	15771		
BG	SCALE	1:1,500	(A3)	DRAWING	1	REV	0
MA	DATE	16.11.202	21	OFFICE	NEWCAST	LE	

J - DIVERSION DRAIN (DETAIL 01)

J - DIVERSION DRAIN (DETAIL 01)

81

APPROVED BY MA

TYPICAL SSI LAYOUT 2 SECTION & DETAILS

GRO	UP		RCA Ref	15771	
	SCALE	NTS (A3)	DRAWING No	4	REV O
	DATE	15.11.21	OFFICE N	EWCAS	TLE

Appendix B

Engineering Logs

Explanatory Notes

GEOTECHNICAL BOREHOLE LOG

BH01

SHEET 1 OF 1

PROJECT No: 15771 CLIENT: Le Mottee Group PROJECT: Proposed Subdivision LOCATION: 29 Fords Road, Clarence Town DATE COMMENCED: 19/10/2021 DATE COMPLETED: 19/10/2021 SURFACE RL: COORDS:

DRILL MODEL: Hand Auger & Shovel

	B	orehole Infor	rmation				Field Material Informa	tion		
METHOD	WATER	FIELD TEST	SAMPLE	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	STRUCTURE AND ADDITIONAL OBSERVATIONS
SHOVEL	Not Encountered		0.10m D	-		CL	TOPSOIL/FILL, Sandy Clay LOAM, brown, moderate structure, few coarse fragments	D - M		TOPSOIL / FILL A Horizon -
НА	Not E		0.30m D 0.40m	0.25 -		CI	Sandy CLAY, grey mottled orange, common medium sized angular gravel (relict sandstone), weakly structured	w <pl< td=""><td>VSt</td><td>RESIDUAL B Horizon</td></pl<>	VSt	RESIDUAL B Horizon
				0.45 -			SANDSTONE, fine grained, grey and orange, excavated as Sandy CLAY, low plasticity, fine grained sand, dry and friable		Н	BEDROCK C Horizon
				-0.5-			BOREHOLE BH01 TERMINATED AT 0.50 m Practical refusal of hand auger Note: Soils logged to AS/NZS 1517:2012 & Australian Soil & Land Survey - Field Handbook			
	1	I	1		1					1
	LOGG	GED: BG					CHECKED: MA	DA	TE: 15/	11/2021

Client:	Le Mottee Group	RCA Australia
Project:	Proposed Subdivision	
Location:	29 Fords Road, Clarence Town	RCA Report No: 15771-301

GEOTECHNICAL BOREHOLE LOG

BH02

SHEET 1 OF 1

PROJECT No: 15771 CLIENT: Le Mottee Group PROJECT: Proposed Subdivision LOCATION: 29 Fords Road, Clarence Town DATE COMMENCED: 19/10/2021 DATE COMPLETED: 19/10/2021 SURFACE RL: COORDS:

DRILL MODEL: Hand Auger & Shovel

-		IUN: 29 For		olare				-		
-	В	Borehole Infor	mation			z	Field Material Informa		6	
METHOD	WATER	FIELD TEST	SAMPLE	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	STRUCTURE AND ADDITIONAL OBSERVATIONS
			D 0.10m	- 0.10 -		CL	TOPSOIL/FILL, Sandy Clay LOAM, brown, moderate structure, few to common fine fragments, with rootlets	D - M		TOPSOIL / FILL A1 Horizon
SHOVEL			0.15m D	- 0.10		CL	FILL, Sandy CLAY, grey-brown mottled orange, common medium to coarse angular gravel (weathered sandstone fragments), weakly structured, with roots/rootlets	w <pl< td=""><td></td><td>FILL A2 Horizon</td></pl<>		FILL A2 Horizon
	Not Encountered		0.25m 0.30m	0.25 -		СН	Medium CLAY, brown, very few fine gravels, weak to massive structure, trace of roots to ~0.4m (up to 10mmø)	-	H	RESIDUAL B Horizon
HA	Not		D	- 0.5						
			0.60m	0.60			becoming with few coarse angular weathered sandstone gravels at ~0.55m BOREHOLE BH02 TERMINATED AT 0.60 m			
				-			Practical hand auger refusal Note: Soils logged to AS/NZS 1517:2012 & Australian Soil & Land Survey - Field Handbook			
				-						
				- 1.0						-
				-						
				-						
				-						
				-						
	_OGO	GED: BG					CHECKED: MA	DA	TE: 15/ [,]	11/2021

	<image/>	
Client:	Le Mottee Group	RCA Australia
Project:	Proposed Subdivision	
Location:	29 Fords Road, Clarence Town	RCA Report No: 15771-301

GEOTECHNICAL BOREHOLE LOG

BH03

SHEET 1 OF 1

PROJECT No: 15771 CLIENT: Le Mottee Group PROJECT: Proposed Subdivision LOCATION: 29 Fords Road, Clarence Town DATE COMMENCED: 19/10/2021 DATE COMPLETED: 19/10/2021 SURFACE RL: COORDS:

DRILL MODEL: Hand Auger & Shovel

	В	orehole Infor	rmation				Field Material Informa			
METHOD	WATER	FIELD TEST	SAMPLE	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	STRUCTURE AND ADDITIONAL OBSERVATIONS
SHOVEL	-		D 0.20m 0.30m D	- 0.20 -		o CL CH	TOPSOIL, Sandy Clay LOAM, brown, moderate structure, very few to few fine to medium gravels, with rootlets Sandy CLAY, brown, common fine to coarse gravel, weak to massive structure, trace of rootlets	М		TOPSOIL A Horizon - ALLUVIUM B2 Horizon -
inconvinter, powerboard, and	Not Encountered		<u>0.40m</u>	- 0.5		СН	Heavy CLAY, grey-brown mottled orange-brown, very few fine to medium gravels, massive structure	w>PL	VSt	B2 Horizon
HA				- 0.95 - 1.0		CI- CH	Sandy CLAY, brown-grey mottled orange, very few fine gravels, weakly structured	w~PL	VSt - H	- RESIDUAL C Horizon
				-						-
				-1.40	<i>[p:] : ']</i>		BOREHOLE BH03 TERMINATED AT 1.40 m Practical hand auger refusal Note: Soils logged to AS/NZS 1517:2012 & Australian Soil & Land Survey - Field Handbook			
	LOGO	GED: BG					CHECKED: MA	DA	TE: 15/ ⁻	11/2021

Client: Le Mottee Group RCA Australi
Project: Proposed Subdivision
Location: 29 Fords Road, Clarence Town RCA Report No: 15771-30

Explanatory Notes – Soil Description

In engineering terms, soil includes every type of uncemented or partially cemented material found in the ground. In practice, if the material can be remoulded by hand in its field condition or in water it is described as a soil. The dominant soil constituent is given in capital letters, with secondary textures in lower case. The dominant feature is assessed from AS 1726:2017 - Geotechnical Site Investigations and a soil symbol is used to define a soil layer.

METHOD

Method	Description
AD/T	Auger Drilling with tungsten carbide bit
AD/V	Auger Drilling with V Bit
AS	Auger Screwing
AT	Air Track
BH	Backhoe
CT	Cable Tool Rig
DB	Washbore Drag Bit
DT	Diatube
E	Excavator
EH	Excavator with Hammer
HA	Hand Auger
HQ	Diamond Core-63mm diameter
Ν	Natural Exposure
NMLC	Diamond Core-52mm diameter
NQ	Diamond Core-47mm diameter
Percussion	Percussion Drilling
PT	Push Tube
RR	Rock Roller
V	Vacuum Excavation
WS	Washbore
Х	Existing Excavation

WATER

 ∇ Water level at date shown

Seepage

NOT ENCOUNTERED: The borehole/test pit was dry soon after excavation. Inflow may have been observed had the borehole/test pit been left open for a longer period.

NOT OBSERVED: The observation of groundwater, whether present or not, was not possible due to drilling water, surface seepage or cave in of the borehole/test pit.

SAMPLING

Sample	Description
В	Bulk Disturbed Sample
D	Disturbed Sample
SPT	Standard Penetration Test
U50	Undisturbed Sample - 50mm diameter
U75	Undisturbed Sample - 75mm diameter
ES	Soil Sample, Environmental
EW	Water Sample, Environmental
G	Gas Sample

SOIL CLASSIFICATION

The appropriate symbols are selected based on the result of visual examination, field tests and available laboratory test results, such as particle size analysis, liquid limit and plasticity index.

Group Symbol	Description
GW	Well graded gravel
GP	Poorly graded gravel
GM	Silty gravel
GC	Clayey gravel
SW	Well graded sand
SP	Poorly graded sand
SM	Silty sand
SC	Clayey sand
ML	Silt of low plasticity
CL	Clay of low plasticity
OL	Organic soil of low plasticity
CI	Clay of medium plasticity
MH	Silt of high plasticity
СН	Clay of high plasticity
OH	Organic soil of high plasticity
Pt	Peat, highly organic soil

MOISTURE CONDITION

d

For coarse grained soils, the following terms are used				
Dry	- Non-cohesive and free-running			
Moist	 Soil feels cool, darkened in colour Soil tends to stick together 			
Wet	 Soil feels cool, darkened in colour Soil tends to stick together, free water forms when handling 			
For fine g	grained soils, the following moisture content (w) terms are used:			
w < PL	- Moist, dry of plastic limit			
w ≈ PL	- Moist, near plastic limit.			
w > PL	- Moist, wet of plastic limit.			

- w ≈ LL - Wet, near liquid limit.
- Wet, wet of liquid limit w > LL

PLASTICITY

Soil plasticity is a measure of the range of water content over which a soil exhibits plastic properties. The classification of the degree of plasticity in terms of the Liquid Limit (LL) is as follows.

Description of Plasticity	Range of Liquid Limit for Silt	Range of Liquid Limit for Clay
Non-plastic	Not applicable	Not applicable
Low plasticity	≤50	≤35
Medium plasticity	Not applicable	>35 and ≤50
High plasticity	>50	>50

COHESIVE SOILS – CONSISTENCY

The consistency of a cohesive soil is defined by descriptive terminology such as very soft, soft, firm, stiff, very stiff and hard. These terms are assessed by the shear strength of the soil as observed visually, by hand penetrometer, dynamic cone penetrometer or vane shear values and by resistance to deformation to hand moulding.

A hand penetrometer may be used in the field or the laboratory to provide an approximate assessment of the unconfined compressive strength (UCS) of cohesive soils. Undrained shear strength

 $c_u = 0.5 \times UCS$. Undrained shear strength values are recorded in kPa as follows:

Telleffel			
Strength Symbol		Indicative Undrained Shear Strength, c _u (kPa)	
Very Soft	VS	≤12	
Soft	S	>12 and ≤25	
Firm	F	>25 and ≤50	
Stiff	St	>50 and ≤100	
Very Stiff	VSt	>100 and ≤200	
Hard	Н	>200	
Friable	Fr	—	

COHESIONLESS SOILS – RELATIVE DENSITY

Silt

Clay

Relative density terms such as very loose, loose, medium dense, dense and very dense are used to describe silty and sandy material, and these are usually based on resistance to drilling penetration, Standard Penetration Test (SPT) N values or Perth Sand Penetrometer

resistance.					
Term	Symbol	Density Ir	ndex		
Very Loose	VL	0 to 15			
Loose	L	15 to 35			
Medium Dens	e MD	35 to 65			
Dense	D	65 to 85			
Very Dense	VD	>85			
SOIL PARTIC	SOIL PARTICLE SIZE DESCRIPTIVE TERMS				
Fraction	Name	Subdivision	Size (mm)		
Oversize	Boulders		>200		
Oversize	Cobbles		63 to 200		
		Coarse	19 to 63		
	Gravel	Medium	6.7 to 19		
Coarse		Fine	2.36 to 6.7		
grained soil		Coarse	0.6 to 2.36		
	Sand	Medium	0.21 to 0.6		
		Fine	0.075 to 0.21		

0.002 to 0.075

< 0.002

Fine grained soil

Explanatory Notes - Rock Description

METHOD

Refer to soil description sheet.

WATER

Refer to soil description sheet.

ROCK QUALITY

The defect spacing is shown where applicable and the Rock Quality Designation (RQD) and Total Core Recovery (TCR) for each core run is given where:

TCR =	Length of core recovered	× 100%
TOR =	Length of core run	X 100 /0

RQD =	Sum of axial length of sound core pieces >100mm long	× 100%
NQD =	Length of core run	X 100 /6

ROCK MATERIAL WEATHERING

Rock material weathering is described using the abbreviations and definitions used in AS1726:2017– Geotechnical Site Investigations.

Term Abbreviation		viation	Definition	
Residual Soil RS			Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.	
Extremely weathered	Extremely XW weathered			Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible.
Highly Weathered	Distinctly Weathered	HW	DW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching or may be decreased due to deposition of weathering products in pores.
Moderately Weathered		MW		The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.
Slightly Weathere	d	SW		Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.
Fresh	Fresh FR			Rock shows no sign of decomposition of individual minerals or colour changes.

Where it is not practicable to distinguish between 'Highly Weathered' and 'Moderately Weathered' rock the term 'Distinctly Weathered' may be used. 'Distinctly Weathered' is defined as follows: 'Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in the pores'. There is some change in rock strength.

ROCK MATERIAL STRENGTH

Rock strength is described using AS1726:2017– Geotechnical Site Investigations and ISRM – Commission on Standardisation of Laboratory and Field Tests, 'Suggested method of determining the Uniaxial Compressive Strength of Rock materials and the Point Load Index' as follows:

Term	Abbreviation	Uniaxial Compressive Strength (MPa)	Point Load Index Is ₅₀ (MPa)	
Very Low	VL	0.6 to 2	0.03 to 0.1	
Low	L	2 to 6	0.1 to 0.3	
Medium	Μ	6 to 20	0.3 to 1	
High	Н	20 to 60	1 to 3	
Very High	VH	60 to 200	3 to 10	
Extremely High	EH	>200	>10	

-

Axial Point Load Index test.

DEFECT SPACING/BEDDING THICKNESS

Diametral Point Load Index test.

Depending on the project, may be either described as mean perpendicular spacing within a set of defects or bedding, or as the spacing between all defects within the rock mass.

Term	Defect Spacing	Bedding
Extremely closely spaced	<6 mm	Thinly laminated
	6 to 20 mm	Laminated
Very closely spaced	20 to 60 mm	Very thin
Closely spaced	0.06 to 0.2 m	Thin
Moderately widely spaced	0.2 to 0.6 m	Medium
Widely spaced	0.6 to 2.0 m	Thick
Very widely spaced	>2 m	Very thick

DEFECT DESCRIPTION

DELEGIBEOG						
Туре	Definition					
JT	Joint					
BP	Bedding Parting					
CO	Contact					
CS	Clay Seam					
CZ	Crush Zone					
DK	Dyke					
DZ	Decomposed Zone					
FC	Fracture					
FZ	Fracture Zone					
FL	Foliation					
FLT	Fault					
VN	Vein					
SM	Seam					
IS	Infilled Seam					
SZ	Shear Zone					

Planarity	Roughness
PR – Planar	VR – Very Rough
CU – Curved	RF – Rough
U – Undulating	S – Smooth
ST – Stepped	POL – Polished
IR – Irregular	SL – Slickensided

Symbol	Coating or Infill	
CA	Calcite	
Clay	Clay	
CN	Clean	
Fe	Iron oxide	
KT	Chlorite	
Qz	Quartz	
Х	Carbonaceous	
SN	Stain	
VNR	Veneer	

The inclinations of defects are measured from perpendicular to the core axis.

Appendix C

Laboratory Test Reports

eastwestonline.com.au 🕧

ANALYSIS REPORT SOIL

PROJECT	NO: EW211454	Date of Issue:	03/11/2021
Customer:	RCA LABORATORIES	Report No:	1
Address:	92 Hill St CARRINGTON NSW 2294	Date Received:	22/10/2021
		Matrix:	Soil
Attention:	Connor Davies	Location:	15771
Phone:	0411 634 520	Sampler ID:	Client
Fax:	02 4902 9299	Date of Sampling:	21/10/2021
Email:	connord@rca.com.au	Sample Condition:	Acceptable

Results apply to the samples as submitted. All pages of this report have been checked and approved for release.

Signed:

Stephanie Cameron Laboratory Operations Manager

PROFICIENT LAB Visit www.aspac-australasia.com to view our certification details. East West is certified by the Australian-Asian Soil & Plant Analysis Council to perform various soil and plant tissue analysis. The tests reported herein have been performed in accordance with our terms of accreditation.

This report must not be reproduced except in full and EWEA takes no responsibility of the end use of the results within this report.

This analysis relates to the sample submitted and it is the client's responsibility to make certain the sample is representative of the matrix to be tested.

Samples will be discarded one month after the date of this report. Please advise if you wish to have your sample/s returned.

Document ID:REP-01Issue No:3Issued By:S. CameronDate of Issue:16/12/2019

results you can rely on

ANALYSIS REPORT

PROJECT NO: EW211454

Document ID:

Issue No:

Issued By: Date of Iss REP-01

3 S. Cameron 16/12/2019 Location: 15771

		BH1	BH2				
			DE	РТН	0.1-0.25m	0.15-0.25m	
Test Parameter	Method Description	Method Reference	Units	LOR	211454-1	211454-2	
pH (1:5 in H20)	Electrode	R&L 4A2	pH units	na	5.12	5.42	
Electrical Conductivity	Electrode	R&L 3A1	dS/m	0.01	0.04	0.07	
Phosphorus Buffer Index	UV-Vis	PMS-12	mg/kg	na	238	1325	
Phosphorus (Colwell)	Bicarb/UV-Vis	R&L 9B1	mg/kg	1	10.5	26.7	
Phosphorus Sorption Capacity	Calc	PMS-12	mg/kg	na	810	740	
Phosphorus Sorption Capacity	Calc	na	kg/ha	na	11300	10400	
Exchangeable Potassium	NH4CI/ICP	R&L 15A1	mg/kg	10	151	135	
Exchangeable Calcium	NH4CI/ICP	R&L 15A1	mg/kg	20	466	741	
Exchangeable Magnesium	NH4CI/ICP	R&L 15A1	mg/kg	10	364	1171	
Exchangeable Sodium	NH4CI/ICP	R&L 15A1	mg/kg	10	76.0	337	
Exchangeable Aluminium	KCI/ICP	R&L 15G1	mg/kg	1	106	130	
Exchangeable Potassium	R&L 15A1	R&L 15A1	cmol/kg	na	0.39	0.35	
Exchangeable Calcium	R&L 15A1	R&L 15A1	cmol/kg	na	2.33	3.71	
Exchangeable Magnesium	R&L 15A1	R&L 15A1	cmol/kg	na	3.03	9.76	
Exchangeable Sodium	R&L 15A1	R&L 15A1	cmol/kg	na	0.33	1.47	
Exchangeable Aluminium	Calculation	R&L 15J1	cmol/kg	na	1.18	1.44	
ECEC	Calculation	PMS-15A1	cmol/kg	na	7.26	16.7	
Ca/Mg Ratio	Calculation	PMS-15A1	cmol/kg	na	0.77	0.38	
K/Mg Ratio	Calculation	PMS-15A1	cmol/kg	na	0.13	0.04	
Exchangeable Potassium %	Calculation	PMS-15A1	%	na	5.33	2.07	
Exchangeable Calcium %	Calculation	PMS-15A1	%	na	32.1	22.2	

results you can rely on

Page 2 of 3

ANALYSIS REPORT

PROJECT NO: EW211454 Location: 15771

		NT SAMPI	BH1	BH2			
			DE	PTH	0.1-0.25m	0.15-0.25m	
Test Parameter	Method Description	Method Reference	Units	LOR	211454-1	211454-2	
Exchangeable Magnesium %	Calculation	PMS-15A1	%	na	41.8	58.4	
Exchangeable Sodium %	Calculation	PMS-15A1	%	na	4.55	8.76	
Exchangeable Aluminium %	Calculation	PMS-15A1	%	na	16.2	8.64	
Mod Emerson Agg Test (SAR5)	513.01	PMS-21	Class	na	6	6	

This Analysis Report shall not be reproduced except in full without the written approval of the laboratory.

Soils are air dried at 40° C and ground <2mm.

NB: LOR is the Lowest Obtainable Reading.

REP-01

S. Cameron

Document ID Issue No: Issued By:

DOCUMENT END

Appendix D

Water Balance Calculations

1	
V	RCA
	NO <i>I</i>
	AUSTRALIA
GEOTE	CHNICAL . ENVIRONMENTA

RCA Australia

92 Hill Street CARRINGTON, NSW 2294

Phone: +61 (02) 4902 9200

INPUT DATA				
Design Wastewater Flow	Q	L/day	480	
Design Irrigation Rate	DIR	mm/day	3.0	
Nominated Land Application Area	L	m²	255	
Crop Factor	С	unitless	0.6-0.8	
Retained Rainfall	RF	untiless	0.7	
Mean Monthly Rainfall Data	Clarence Towr	n - Prince St (0	61010)	
Mean Monthly Pan Evaporation Data Paterson - Tocal (061250)				

Parameter	Symbol	Formula	Units	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Days in month	D		days	31	28	31	30	31	30	31	31	30	31	30	31	365
Rainfall	R		mm/month	105	111.7	124.8	99.9	86.4	101.3	68	60.3	61.9	68.9	78	99.8	1066
Evaporation	Е		mm/month	192.2	148.4	130.2	96	74.4	63	74.4	102.3	132	161.2	174	204.6	1553
Crop Factor	С		unitless	0.80	0.80	0.75	0.70	0.65	0.60	0.60	0.60	0.65	0.70	0.75	0.80	
OUTPUTS																
Evapotranspiration	ET	ExC	mm/month	154	119	98	67	48	38	45	61	86	113	131	164	1122
Percolation	В	DIRxD	mm/month	93.0	84	93.0	90.0	93.0	90.0	93.0	93.0	90.0	93.0	90.0	93.0	1095
Outputs		ET+B	mm/month	246.8	202.72	190.7	157.2	141.4	127.8	137.6	154.4	175.8	205.8	220.5	256.7	2217
INPUTS																
Retained Rainfall	RR	RxRF	mm/month	73.5	78.19	87.36	69.93	60.48	70.91	47.6	42.21	43.33	48.23	54.6	69.86	746
Applied Effluent	W	(QxD)/L	mm/month	58.4	52.7	58.4	56.5	58.4	56.5	58.4	58.4	56.5	58.4	56.5	58.4	687
Inputs		RR+W	mm/month	131.9	130.9	145.7	126.4	118.8	127.4	106.0	100.6	99.8	106.6	111.1	128.2	1433
STORAGE CALCULATION																
Storage remaining from previo	ous month	ו	mm/month	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Storage for the month	S	(RR+W)-(ET+B)	mm/month	-114.9	-71.8	-44.9	-30.8	-22.5	-0.4	-31.7	-53.8	-76.0	-99.3	-109.4	-128.5	
Cumulative Storage	М		mm	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Max. Storage for Nom. Area	Ν		mm	0.00												
Storage Volume Required	V	NxL	L	0												
LAND AREA REQUIRED FO	R ZERO S	STORAGE	m²	86	108	144	165	184	253	165	133	109	94	87	80	
MINIMUM AREA REQUIRED	FOR ZEF	RO STORAGE	m²	254.0												

H:\JOBFILES\Job15771- Clarencetown\300 Reporting\[15771_OSSM Calcs - 2bedroom.xlsm]Water Balance

· · · · · · · · · · · · · · · · · · ·							
	RCA Australia						
RCA	92 Hill Street						
AUSTRALIA	CARRINGTON, NSW 2294						
GEOTECHNICAL • ENVIRONMENTAL	Phone: +61 (02) 4902 9200						
INPUT DATA							
	Wastewater Loading				Nutrient Crop U	Jptake	
Hydraulic Load		480 L/day	Crop N Upt	ake	250 kg/ha/yr	which equals	68 mg/m ² /day
Effluent N Concentration		30 mg/L	Crop P Upt	ake	30 kg/ha/yr	which equals	8 mg/m²/day
% N Lost to Soil	Processes (Geary & Gardner 1996)	0.2 Decimal			Phosphorus So	orption	
	Total N Loss to Soil	2880 mg/day	P-sorption	result	740 mg/kg	which equals	6216 kg/ha
	Remaining N Load after soil loss	11520 mg/day	Bulk Densit	ty	1.4 g/cm ²		
Effluent P Concentration		12 mg/L	Depth of so	bil	0.6 mg/kg		
Design Life of System		50 yrs	% of predic	ted P-sorp ^[2]	0.5 Decimal		
NUTRIENT BALANCE BA	SED ON ANNUAL CROP UPTAKE RA	TES					
Minimum Area required w	vith zero buffer						
Nitrogen		168 m ²					
Phosphorus		228 m ²					
Determination of Buffer Z	one Size for the Nominated Land Ap	plication Area (LAA)					
Nominated LAA Size		255 m ²					
Predicted N Export from LA	AA	-2.17 kg/year					
Predicted P Export from LA	A	-0.25 kg/year					
Phosphorous Longevity of	LAA	59 Years					
Minimum Buffer Required f	or excess nutrient	0 m ²					
PHOSPHORUS BALANCE	1						
Nominated LAA Size		255 m ²					
Daily P load		0.006 kg/day -		Phosphorus gene	rated over life of system		105.120 kg
Daily Uptake		0.002 kg/day -			tative uptake for lilfe of sys	tem	0.150 kg/m ²
Measured p-sorption capac	sitv	0.622 kg/m ²					2.1.00
Assumed p-sorption capac	-	0.311 kg/m ² -		Phosphorus abso	rbed in 50 years		0.311 kg/m ²
Site p-sorption capcaity	·· ·	79.254 kg -		Desired Annual P	•		2.350 kg/year
		70.207 Ng	-			which equals	0.006 kg/day
P-load to be sorbed		1.337 kg/year				which equals	0.000 kg/day

H:\JOBFILES\Job15771- Clarencetown\300 Reporting\[15771_OSSM Calcs - 2bedroom.xlsm]Nutrient Balance

1	
V	RCA
	NO <i>I</i>
	AUSTRALIA
GEOTE	CHNICAL . ENVIRONMENTA

RCA Australia

92 Hill Street CARRINGTON, NSW 2294

Phone: +61 (02) 4902 9200

INPUT DATA			
Design Wastewater Flow	Q	L/day	600
Design Irrigation Rate	DIR	mm/day	3.0
Nominated Land Application Area	L	m²	320
Crop Factor	С	unitless	0.6-0.8
Retained Rainfall	RF	untiless	0.7
Mean Monthly Rainfall Data	Clarence Towr	n - Prince St (0	61010)
Mean Monthly Pan Evaporation Data	Paterson	- Tocal (06125	50)

Parameter	Symbol	Formula	Units	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Days in month	D		days	31	28	31	30	31	30	31	31	30	31	30	31	365
Rainfall	R		mm/month	105	111.7	124.8	99.9	86.4	101.3	68	60.3	61.9	68.9	78	99.8	1066
Evaporation	Е		mm/month	192.2	148.4	130.2	96	74.4	63	74.4	102.3	132	161.2	174	204.6	1553
Crop Factor	С		unitless	0.80	0.80	0.75	0.70	0.65	0.60	0.60	0.60	0.65	0.70	0.75	0.80	
OUTPUTS																
Evapotranspiration	ET	ExC	mm/month	154	119	98	67	48	38	45	61	86	113	131	164	1122
Percolation	В	DIRxD	mm/month	93.0	84	93.0	90.0	93.0	90.0	93.0	93.0	90.0	93.0	90.0	93.0	1095
Outputs		ET+B	mm/month	246.8	202.72	190.7	157.2	141.4	127.8	137.6	154.4	175.8	205.8	220.5	256.7	2217
INPUTS																
Retained Rainfall	RR	RxRF	mm/month	73.5	78.19	87.36	69.93	60.48	70.91	47.6	42.21	43.33	48.23	54.6	69.86	746
Applied Effluent	W	(QxD)/L	mm/month	58.1	52.5	58.1	56.3	58.1	56.3	58.1	58.1	56.3	58.1	56.3	58.1	684
Inputs		RR+W	mm/month	131.6	130.7	145.5	126.2	118.6	127.2	105.7	100.3	99.6	106.4	110.9	128.0	1431
STORAGE CALCULATION																
Storage remaining from prev	ious mont	h	mm/month	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Storage for the month	S	(RR+W)-(ET+B)	mm/month	-115.1	-72.0	-45.2	-31.0	-22.8	-0.6	-31.9	-54.0	-76.2	-99.5	-109.7	-128.7	
Cumulative Storage	М		mm	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Max. Storage for Nom. Area	Ν		mm	0.00												
Storage Volume Required	V	NxL	L	0												
LAND AREA REQUIRED FO	OR ZERO	STORAGE	m²	107	135	180	206	230	316	207	166	136	118	108	100	
MINIMUM AREA REQUIREI	D FOR ZE	RO STORAGE	m ²	317.0	_											
					•											

L H:\JOBFILES\Job15771- Clarencetown\300 Reporting\[15771_OSSM Calcs - 3bedroom.xlsm]Water Balance

RCA	RCA Australia 92 Hill Street CARRINGTON, NSW 2294		
GEOTECHNICAL • ENVIRONMENTAL	Phone: +61 (02) 4902 9200		
INPUT DATA			
	Wastewater Loading		
Hydraulic Load		600 L/day	Crop N
Effluent N Concentration		30 mg/L	Crop P
% N Lost to Soil	Processes (Geary & Gardner 1996)	0.2 Decimal	
	Total N Loss to Soil	3600 mg/day	P-sorpti
	Remaining N Load after soil loss	14400 mg/day	Bulk De
Effluent P Concentration		12 mg/L	Depth o

68 mg/m²/day Uptake 250 kg/ha/yr which equals 8 mg/m²/day 30 kg/ha/yr which equals Uptake **Phosphorus Sorption** 740 mg/kg tion result which equals 6216 kg/ha 1.4 g/cm^2 ensity of soil 0.6 mg/kg Design Life of System % of predicted P-sorp^[2] 0.5 Decimal 50 yrs NUTRIENT BALANCE BASED ON ANNUAL CROP UPTAKE RATES Minimum Area required with zero buffer 210 m² Nitrogen 285 m² Phosphorus Determination of Buffer Zone Size for the Nominated Land Application Area (LAA) 320 m² Nominated LAA Size -2.74 kg/year Predicted N Export from LAA Predicted P Export from LAA -0.32 kg/year Phosphorous Longevity of LAA 60 Years 0 m^2 Minimum Buffer Required for excess nutrient PHOSPHORUS BALANCE 320 m^2 Nominated LAA Size 0.007 kg/day Daily P load Phosphorus generated over life of system 131.400 kg 0.150 kg/m^2 Daily Uptake 0.003 kg/day Phosphorus vegetative uptake for lilfe of system 0.622 kg/m^2 Measured p-sorption capacity 0.311 kg/m² Phosphorus absorbed in 50 years 0.311 kg/m^2 Assumed p-sorption capacity **Desired Annual P Application Rate** 2.949 kg/year 99.456 kg Site p-sorption capcaity which equals 0.008 kg/day

Nutrient Crop Uptake

P-load to be sorbed

1.668 kg/year

H:\JOBFILES\Job15771- Clarencetown\300 Reporting\[15771_OSSM Calcs - 3bedroom.xlsm]Nutrient Balance

1	
	$\mathbf{R} \subset \mathbf{A}$
	IC/I
	AUSTRALIA
GEOTEC	CHNICAL • ENVIRONMENTA

RCA Australia

92 Hill Street CARRINGTON, NSW 2294

Phone: +61 (02) 4902 9200

INPUT DATA			
Design Wastewater Flow	Q	L/day	720
Design Irrigation Rate	DIR	mm/day	3.0
Nominated Land Application Area	L	m²	380
Crop Factor	С	unitless	0.6-0.8
Retained Rainfall	RF	untiless	0.7
Mean Monthly Rainfall Data	Clarence Towr	n - Prince St (0	61010)
Mean Monthly Pan Evaporation Data	Paterson	- Tocal (06125	50)

Parameter	Symbol	Formula	Units	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Days in month	D		days	31	28	31	30	31	30	31	31	30	31	30	31	365
Rainfall	R		mm/month	105	111.7	124.8	99.9	86.4	101.3	68	60.3	61.9	68.9	78	99.8	1066
Evaporation	Е		mm/month	192.2	148.4	130.2	96	74.4	63	74.4	102.3	132	161.2	174	204.6	1553
Crop Factor	С		unitless	0.80	0.80	0.75	0.70	0.65	0.60	0.60	0.60	0.65	0.70	0.75	0.80	
OUTPUTS																
Evapotranspiration	ET	ExC	mm/month	154	119	98	67	48	38	45	61	86	113	131	164	1122
Percolation	В	DIRxD	mm/month	93.0	84	93.0	90.0	93.0	90.0	93.0	93.0	90.0	93.0	90.0	93.0	1095
Outputs		ET+B	mm/month	246.8	202.72	190.7	157.2	141.4	127.8	137.6	154.4	175.8	205.8	220.5	256.7	2217
INPUTS																
Retained Rainfall	RR	RxRF	mm/month	73.5	78.19	87.36	69.93	60.48	70.91	47.6	42.21	43.33	48.23	54.6	69.86	746
Applied Effluent	W	(QxD)/L	mm/month	58.7	53.1	58.7	56.8	58.7	56.8	58.7	58.7	56.8	58.7	56.8	58.7	692
Inputs		RR+W	mm/month	132.2	131.2	146.1	126.8	119.2	127.8	106.3	100.9	100.2	107.0	111.4	128.6	1438
STORAGE CALCULATION																
Storage remaining from previ	ious montl	h	mm/month	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Storage for the month	S	(RR+W)-(ET+B)	mm/month	-114.5	-71.5	-44.6	-30.4	-22.1	0.0	-31.3	-53.4	-75.6	-98.9	-109.1	-128.1	
Cumulative Storage	М		mm	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Max. Storage for Nom. Area	Ν		mm	0.00												
Storage Volume Required	V	NxL	L	0												
LAND AREA REQUIRED FO	R ZERO	STORAGE	m²	129	162	216	248	276	380	248	199	163	142	130	119	
MINIMUM AREA REQUIRED	FOR ZE	RO STORAGE	m²	380.0												

H:\JOBFILES\Job15771- Clarencetown\300 Reporting\[15771_OSSM Calcs - 4bedroom.xlsm]Water Balance

RCA Australia					
RCA 92 Hill Street					
AUSTRALIA CARRINGTON, NSW 2294					
GEOTECHNICAL • ENVIRONMENTAL Phone: +61 (02) 4902 9200					
INPUT DATA					
Wastewater Loading			Nutrient Crop	Uptake	
Hydraulic Load	720 L/day	Crop N Uptake	250 kg/ha/yr	which equals	68 mg/m ² /day
Effluent N Concentration	30 mg/L	Crop P Uptake	30 kg/ha/yr	which equals	8 mg/m²/day
% N Lost to Soil Processes (Geary & Gardner 199	6) 0.2 Decimal		Phosphorus S	Sorption	
Total N Loss to S	oil 4320 mg/day	P-sorption result	740 mg/kg	which equals	6216 kg/ha
Remaining N Load after soil los	ss 17280 mg/day	Bulk Density	1.4 g/cm ²		
Effluent P Concentration	12 mg/L	Depth of soil	0.6 mg/kg		
Design Life of System	50 yrs	% of predicted P-sorp ^[2]	0.5 Decimal		
NUTRIENT BALANCE BASED ON ANNUAL CROP UPTAK	E RATES				
Minimum Area required with zero buffer					
-	2				
-	252 m ²				
Nitrogen Phosphorus	252 m ⁻ 342 m ²				
Nitrogen Phosphorus	342 m ²				
Nitrogen Phosphorus Determination of Buffer Zone Size for the Nominated Land	342 m ²				
Nitrogen Phosphorus Determination of Buffer Zone Size for the Nominated Land Nominated LAA Size	342 m ² d Application Area (LAA)				
Nitrogen Phosphorus Determination of Buffer Zone Size for the Nominated Lan Nominated LAA Size Predicted N Export from LAA	342 m ² d Application Area (LAA) 380 m ²				
Nitrogen	342 m ² d Application Area (LAA) 380 m ² -3.19 kg/year				
Nitrogen Phosphorus Determination of Buffer Zone Size for the Nominated Lan e Nominated LAA Size Predicted N Export from LAA Predicted P Export from LAA	342 m ² d Application Area (LAA) 380 m ² -3.19 kg/year -0.35 kg/year				
Nitrogen Phosphorus Determination of Buffer Zone Size for the Nominated Lan Nominated LAA Size Predicted N Export from LAA Predicted P Export from LAA Phosphorous Longevity of LAA Minimum Buffer Required for excess nutrient	342 m ² d Application Area (LAA) 380 m ² -3.19 kg/year -0.35 kg/year 59 Years				
Nitrogen Phosphorus Determination of Buffer Zone Size for the Nominated Land Nominated LAA Size Predicted N Export from LAA Predicted P Export from LAA Phosphorous Longevity of LAA Minimum Buffer Required for excess nutrient PHOSPHORUS BALANCE	342 m ² d Application Area (LAA) 380 m ² -3.19 kg/year -0.35 kg/year 59 Years 0 m ²				
Nitrogen Phosphorus Determination of Buffer Zone Size for the Nominated Land Nominated LAA Size Predicted N Export from LAA Predicted P Export from LAA Phosphorous Longevity of LAA Minimum Buffer Required for excess nutrient PHOSPHORUS BALANCE	342 m ² d Application Area (LAA) 380 m ² -3.19 kg/year -0.35 kg/year 59 Years 0 m ² 380 m ²	Phosphorus genera	ated over life of system		157.680 kg
Nitrogen Phosphorus Determination of Buffer Zone Size for the Nominated Land Nominated LAA Size Predicted N Export from LAA Predicted P Export from LAA Phosphorous Longevity of LAA Minimum Buffer Required for excess nutrient PHOSPHORUS BALANCE	342 m ² d Application Area (LAA) 380 m ² -3.19 kg/year -0.35 kg/year 59 Years 0 m ² 380 m ² 0.009 kg/day		•	stem	157.680 kg 0.150 kg/m ²
Nitrogen Phosphorus Determination of Buffer Zone Size for the Nominated Land Nominated LAA Size Predicted N Export from LAA Predicted P Export from LAA Phosphorous Longevity of LAA Minimum Buffer Required for excess nutrient PHOSPHORUS BALANCE Nominated LAA Size Daily P load Daily Uptake	342 m ² d Application Area (LAA) 380 m ² -3.19 kg/year -0.35 kg/year 59 Years 0 m ² 380 m ²		ated over life of system ative uptake for lilfe of sy	stem	157.680 kg 0.150 kg/m ²
Nitrogen Phosphorus Determination of Buffer Zone Size for the Nominated Land Nominated LAA Size Predicted N Export from LAA Predicted P Export from LAA Phosphorous Longevity of LAA Minimum Buffer Required for excess nutrient PHOSPHORUS BALANCE Nominated LAA Size Daily P load Daily Uptake Measured p-sorption capacity	342 m ² d Application Area (LAA) 380 m ² -3.19 kg/year -0.35 kg/year 59 Years 0 m ² 380 m ² 0.009 kg/day 0.003 kg/day 0.622 kg/m ²	Phosphorus vegeta	ative uptake for lilfe of sy	stem	0.150 kg/m ²
Nitrogen Phosphorus Determination of Buffer Zone Size for the Nominated Land Nominated LAA Size Predicted N Export from LAA Predicted P Export from LAA Phosphorous Longevity of LAA Minimum Buffer Required for excess nutrient PHOSPHORUS BALANCE Nominated LAA Size Daily P load Daily Uptake Measured p-sorption capacity Assumed p-sorption capacity	342 m ² d Application Area (LAA) 380 m ² -3.19 kg/year -0.35 kg/year 59 Years 0 m ² 380 m ² 0.009 kg/day 0.003 kg/day 0.622 kg/m ² 0.311 kg/m ²		ative uptake for lilfe of sy bed in 50 years	stem	0.150 kg/m ² 0.311 kg/m ²
Nitrogen Phosphorus Determination of Buffer Zone Size for the Nominated Lan Nominated LAA Size Predicted N Export from LAA Predicted P Export from LAA Phosphorous Longevity of LAA	342 m ² d Application Area (LAA) 380 m ² -3.19 kg/year -0.35 kg/year 59 Years 0 m ² 380 m ² 0.009 kg/day 0.003 kg/day 0.622 kg/m ²	 Phosphorus vegeta Phosphorus absort 	ative uptake for lilfe of sy bed in 50 years	stem	0.150 kg/m ²

H:\JOBFILES\Job15771- Clarencetown\300 Reporting\[15771_OSSM Calcs - 4bedroom.xlsm]Nutrient Balance